
(Click here for the web formatted version)

NaturalPoint Tracking Toolkits
Users Manual version 2.0

Complete Table Of Contents

Introduction
Forward1. 
About NaturalPoint2. 

1. 

How to use the Manual
Quick Start1. 
Further Reading2. 

2. 

Getting Started
Minimum Requirements1. 
What's Included2. 
Hardware Compatibility3. 
Software and Hardware Installation

Software Installation1. 
4. 

Camera Placement5. 
Camera Synchronization6. 
License Activation7. 

3. 

Using the Tracking Tools software
Getting Started1. 
Working with Rigid Bodies

Making Rigid Bodies1. 
2. 

Real-time Tracking
Exporting and Streaming Tracking Data1. 

3. 

4. 

Using the Tracking Tools API
Getting Started1. 
Tracking Tools API Calls

Startup and Shutdown1. 
Interface2. 
Streaming3. 
Frame4. 
Control5. 
Point Cloud Interface6. 
Result Processing7. 

2. 

5. 

Tips and Tricks6. 
Cameras and Accessories7. 
Software Updates8. 
Troubleshooting9. 

1. Introduction

1.1 Forward

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

1/33

http://www.naturalpoint.com:80/optitrack/support/manuals/trackingtools/tt-index.html


Information in this Users Manual is subject to change without notice and does not represent a commitment
on the part of NaturalPoint. The software described in this Users Manual is furnished under a license
agreement and may be used only in accordance with the terms of said license agreement.

This document is copyright 2009 NaturalPoint Inc. All rights reserved. No part of this publication may be
reproduced in any form, by any means, without express written permission.

OptiTrack, Tracking Tools and NaturalPoint are trademarks of NaturalPoint Inc.
Windows is a trademark of Microsoft. All other trademarks are property of their respective owners.

For providing VRPN, NaturalPoint would like to thank the NIH National Research Resource in Molecular
Graphics and Microscopy at the University of North Carolina at Chapel Hill, supported by the NIH
National Center for Research Resources and the NIH National Institute of Biomedical Imaging and
Bioengineering.

1.2 About NaturalPoint

NaturalPoint Inc. is pleased to provide you with superior optical tracking products, we hope that you enjoy
using your NaturalPoint Tracking Toolkits.

NaturalPoint
33872 SE Eastgate Circle
Corvallis, OR 97333
Telephone: 541-753-6645
Fax: 541-753-6689
www.naturalpoint.com

2. How to use the Manual

Quick Start

It is strongly recommended to read this manual before using the Tracking Toolkits optical tracking
product. To begin using the product as soon as possible without reading the full manual then you can start
quickly by following these instructions :

Read the Installation section and follow the instructions described there, otherwise your Tracking
Tools application and OptiTrack Cameras may not work.

◊ 

Once the software is installed, connect the OptiTrack cameras to the USB ports of your computer.◊ 
Activate the Tracking Tools License◊ 
Launch the Tracking Tools software using the shortcut on your desktop.◊ 

Further Reading

The Tracking Tools software is a powerful optical tracking solution with a number of options designed to

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

2/33

http://www.naturalpoint.com


help you get the best performance. It is recommended that you read Section 4 ("Using Tracking Tools
Software"), Section 5 ("Using the Tracking Tools API") to better understand how the product works.

3. Getting Started

3.1 Minimum System Requirements

3+ OptiTrack cameras◊ 
Windows XP SP2 or Windows Vista◊ 
.Net 3.0 Runtime◊ 
VC2005 Runtime◊ 
1.5 GHz Processor◊ 
256 MB of RAM◊ 
20 MB of free hard disk space◊ 
USB 2.0 Hi-Speed port◊ 

3.2 What's Included

Tracking Tools license card Quickstart guide

Online Software Download

3.3 Hardware Compatibility

The Tracking Tools software can only be used with OptiTrack FLEX:C120, OptiTrack FLEX:V100, and
OptiTrack SLIM:V100 hardware. Older camera models are not compatible and will not work with this
software.

3.4 Software and Hardware Installation

For best results it is suggested to install all software before you connect the OptiTrack cameras.

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

3/33



3.4.1 Software Installation 
NOTE: Windows XP and Vista users must be logged in as an administrator. If you only have one user on
your computer, you most likely already have administrator privileges.

Insert the included NaturalPoint software CD into your CD drive. Wait for the install program to
start. If the install program does not start within a few minutes, open "My Computer" then double
click on the CD drive icon, and double click again on the Setup file.

1. 

There are two software packages to install, the OptiTrack SDK and the Tracking Toolkits. Start
with the OptiTrack SDK installer, once it has completed it will automatically start the Tracking
Toolkits installer for you.
Note: The Tracking Toolkits will detect if you are missing required dependencies such as .Net 3.0
and install them for you.

2. 

Follow the software installation instructions on the screen.
Note: Windows may display a warning message about the drivers not being signed. Click YES to
accept the drivers, the drivers WILL NOT harm your system.

3. 

Tracking Tools software icon will appear on your desktop.4. 

3.5 Camera Placement

In order to track markers, multiple OptiTrack cameras must be arranged to have overlapping fields of
view. This will create an area called a capture volume in which tracking can occur. When possible, secure
the cameras firmly in place. Whenever the cameras are moved it is necessary to recalibrate them.

For best calibration and tracking results, avoid placing the cameras all in the same plane. Instead position
the cameras at different angles.

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

4/33



3.6 Camera Synchronization

Multiple OptiTrack cameras can be linked together to synchronize their exposure timing. Camera
synchronization allows for greater precision and more robust tracking. The cameras are connected in a
chain using Sync Cables*. Once the cables are connected and the cameras turned on, they will begin
synchronizing automatically.
* Sync Cables sold separately

Note : All cameras must be of the same model type, otherwise synchronization will not work
and should not be attempted.

1. 

Connect all cameras to the computer via USB.2. 

Plug the Camera Sync Splitter into each camera.3. 

Chain the cameras together by connecting each camera's "out" connector to the next camera's "in"
connector.

4. 

Do not form a loop, the last camera in the chain should not be connected to the first camera.5. 

Start cameras in the software, the cameras will automatically synchronize.6. 

3.7 License Activation

Before the Tracking Tools software can be used, you must first activate the included license (see License
Card in section 3.2) for one of your OptiTrack cameras. Choose one of your cameras and use the serial
number found on the back during the activation process. Activating the license enables you to use the

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

5/33



software toolkit as long as the camera for which it was activated is connected to your computer.

There are two different methods for activating your license :

Direct : Double click the OptiTrack License Activation tool shortcut on your desktop. Fill out the
required details and then press the activate button. If the activation is successful a license will be
generated and installed on your computer.

◊ 

Email : If your computer is behind a firewall which prevents the direct tool from working, you can
activate your license on the OptiTrack website and have it emailed to you. Please visit
www.optitrack.com/activate for more details.

◊ 

License Activation tool :

Additional information can be found in our licensing FAQ online at
http://www.naturalpoint.com/optitrack/support/activate/faq.html.

4. Using the Tracking Tools software
The Tracking Tools application is a robust, real-time 3D optical tracking solution. It provides calibration, 3D
reconstruction and rigid body tracking across multiple OptiTrack cameras. Markers can be attached to multiple
objects in known patterns (rigid bodies) allowing them to be tracked in full 6DOF (position and orientation).
Tracking data can be accessed in real time through network streaming support or the easy to use software API. The
information provided below will help you get the best results from your OptiTrack cameras and software.

4.1 Getting Started
Before using the Tracking Tools software make sure to have all of the software and hardware properly
installed and licensed as described in Chapter 3. Once the installation is complete you can begin using the
software by following these instructions :

Connect 3 or more cameras to the USB port of the computer and arrange them to set up a capture
volume as described in Section 3.5 ("Camera Placement").

1. 

Start the Tracking Tools software.2. 

Perform a camera calibration and test the capture volume. Save the resulting calibration for later
use.

3. 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

6/33

http://www.optitrack.com/activate
http://www.naturalpoint.com:80/optitrack/support/manuals/trackingtools/images/tt-license_tool.gif
http://www.naturalpoint.com/optitrack/support/activate/faq.html


Rigid bodies for tracking can be defined using the 3D point cloud data, or by loading existing
rigid body definitions from a file.

4. 

4.2 Working with Rigid Bodies
The Tracking Tools application creates a cloud of 3D points representing reflective markers which are
visible to cameras within the capture volume. Rigid Bodies are clusters of reflective markers in a unique
configuration which allow them to be identified and tracked in the cloud of 3D points. It is possible to
track multiple rigid bodies at a time in full 6DOF (position and orientation).

The following section introduces best practices for defining rigid bodies and explains how to track them
using the software.

4.2.1 Making Rigid Bodies
To get the best tracking performance there are several factors listed below to consider when making the
physical rigid bodies. The configuration(s) will also be influenced by the tracking volume and camera
placement, the size and shape of the physical object which the markers are mounted to, and the other
objects which may be present within the tracking volume.

Marker Types
Spherical reflective markers will usually yield the most stable and accurate 3D tracking data. Hemispheric
and flat markers are less desirable because their shape as it appears to the camera may change when it
rotates, this can introduce errors when calculating their center of mass and position.

When using small rigid bodies, try to use small markers to reduce the chances of one marker occluding
(blocking from view of a camera) other markers.

When tracking at larger distances from the camera, using larger markers can help improve the resolution
of the tracking. Marker sizes typically range from 10 to 25 millimeters and larger.

NaturalPoint offers a range of high quality pre-made reflective markers for sale, for more details see
Section 7 ("Cameras and Accessories").

Marker Quantity
Three markers is the minimum required to define a rigid body. A larger number of markers can be used to
increase the precision and reduce likelihood of the rigid body flipping. Using more than three markers also
provides redundancy, then tracking can occur even when some of the assigned markers are not visible (the
minimum visible for tracking is three).

Rigid Body Sizing
The physical arrangement of the markers should not be too small and should not have markers too close
together. Markers closer than 6 millimeters can result in the following issues :

Markers are more likely to overlap or occlude one another when seen from a camera, resulting in
incorrect 3D position data or markers failing to be tracked.

◊ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

7/33



If the point cloud tracking residual value is too high, or the calibration is poor, then rays for
adjacent markers could be grouped together incorrectly resulting in misidentified marker locations
and/or falsely reported markers.

◊ 

Marker Arrangement
For 3-marker rigid bodies, using asymmetrical marker arrangements improves the tracking reliability.
Symmetrical triangles make it harder for the software to identify the correct orientation of a rigid body and
increases the likelihood of arriving at an incorrect solution . This can often manifest as the rigid body
flipping on its axis between frames.

When multiple rigid bodies will be tracked at the same time, avoid making rigid bodies which are too
similar to each other. Making them individually unique with different marker arrangements and sizes will
reduce the likelihood of misidentification and swapping.

4.3 Real-time Tracking

4.3.1 Exporting and Streaming Tracking Data
The 3D point cloud and rigid body tracking data can be exported using files or streamed in real-time for
use in other applications. The details below explain these features.

Exporting to CSV format
Recorded tracking data with rigid body locations can be exported in the CSV format for use in other
applications. The exported file will contain comments at the top which describe the data formatting.

Streaming tracking data
Real-time and recorded data can be streamed over the network for use in other applications. Several
different methods of streaming are supported including industry standards VRPN and Trackd. All of the
streaming methods are built on a network transport which allows the data to be made available on the local
computer as well as remote network computers.

Before trying to stream, make sure that either recorded data is currently loaded or the cameras are tracking
in real-time. It is also necessary to have rigid bodies defined.

Since data is streamed over TCP/IP on the network, it may be necessary to review your firewall settings. If
the firewall is blocking traffic it may prevent the software from properly sending the data or the client
applications from reading it.

NaturalPoint Engine (NatNet) : The NaturalPoint streaming engine is a custom streaming
implementing which can be used to access real-time and recorded tracking data over the network.
NaturalPoint provides sample source code for writing a client which receives the streaming data.
The standard sample client can be used to verify that streaming is functioning properly.

Streams : rigid bodies and markers

◊ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

8/33



Network Details : port 1510, multigast group 1001, UDP multicast

VRPN Engine : VRPN is an open source set of classes and a protocol which can be used to
access real-time and recorded tracking data over the network. It features low latency and has
built-in auto-renegotiation if a connection is temporarily dropped. NaturalPoint provides sample
source code for a listener that receives tracking data. Additional sample code is available from the
VRPN website .

In VRPN objects are identified and accessed by a name. In the software's implementation of
VRPN the name used is the one assigned to a rigid body.

If needed, the VRPN port can be changed from the default by editing the port number setting.

Streams : rigid bodies

Network Details : selectable port, default port 3883, TCP + UDP

◊ 

Trackd Engine : Trackd is a standard created by VRCO/Mechdyne which can be used to access
real-time and recorded tracking data over the network. NaturalPoint provides sample source code
for a listener that receives tracking data. Additional information is available from the VRCO
website.

The Trackd server must be configured before data can be streamed, use the following steps to get
it set up.

A Trackd module (dll) and sample configuration file are provided by NaturalPoint.1. 

Configure Trackd by calling it the "naturalpointtracker".2. 

Define the number of rigid bodies desired to track.3. 

The streaming host defaults to localhost, but can be changed to a different network
address.

4. 

Once the configuration is complete, run the Trackd server.5. 

Streams : rigid bodies

Network Details : port 4994, TCP + UDP

◊ 

5. Using the Tracking Tools API
In order to use Tracking Tools tracking in your own applications, you will need to implement support for it using
the Tracking Tools API. The Tracking Tools API is written as a set of C/C++ function calls and a loadable DLL.
The following section provides an overview of the system architecture as well as specific detail about the API
calls.

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

9/33

http://www.cs.unc.edu/Research/vrpn/
http://www.vrco.com/trackd/Overviewtrackd.html
http://www.vrco.com/trackd/Overviewtrackd.html


5.1 Getting Started

Only a small amount of code needs to be written in order to begin tracking rigid bodies. The following
outlines the initialization procedure :

Make sure the cameras have been calibrated with the result saved to a file.1. 

Initialize the rigid body tracking using TT_Initialize().2. 

Load an existing calibration result or Tracking Tools project using TT_LoadCalibration() or
TT_LoadProject().

3. 

Load existing rigid body definitions using TT_LoadTrackables().4. 

At this point, the cameras should be initialized and collecting frame information. The main loop of the
application should poll for frames using TT_Update() or TT_UpdateSingleFrame().

When data processing is complete, call the TT_Shutdown().

5.2 Tracking Tools API Calls

5.2.1 Tracking Tools Startup and Shutdown

5.2.1.1 TT_Initialize( )

The TT_Initialize( ) function attempts to initialize the Tracking Tools tracking API. It should be
called before attempting to use other components of the API. It returns information about whether
or not it succeeded.

NPRESULT TT_Initialize()

Parameters
none• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

InvalidLicense A valid Tracking Tools license was not found

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

10/33



5.2.1.2 TT_Shutdown( )

The TT_Shutdown( ) function attempts to shutdown the Tracking Tools tracking API. It should be
called before the application using the Tracking Tools tracking API closes. It returns information
about whether or not it succeeded.

Note : If needed, applications may call TT_Initialize() again after having previously called
TT_Shutdown(). While applications will typically call TT_Initialize() on startup and
TT_Shutdown() before they close, some applications may choose a different implementation.
Also see TT_FinalCleanup() for releasing resources used by the API.

 NPRESULT TT_Shutdown()

 Parameters
none• 

 Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

5.2.1.3 TT_FinalCleanup( )

The TT_FinalCleanup() function should be called when applications are done using the Tracking
Tools API services. This is typically when an application is closing, but can be performed sooner
to recover resources when the Tracking Tools API is not being used.

This function shuts down the camera device driver and ensures all the driver threads are
terminated properly.

Note : If TT_Shutdown() hasn't been called first, TT_Shutdown() will be called automatically by
TT_FinalCleanup().

Note : TT_FinalCleanup() is optional, but recommened, in order to ensure orderly shutdown of
cameras and other resources.

NPRESULT TT_FinalCleanup()

 Parameters
none• 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

11/33



 Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

5.2.2 Tracking Tools Interface

5.2.2.1 TT_LoadCalibration()

The TT_LoadCalibration() function attempts to load a calibration profile stored in a file. It is
passed the path to the profile and returns information about whether or not it succeeded.

NPRESULT TT_LoadCalibration(const char *filename)

Parameters
filename
[in] the path to the location of the camera calibration

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

LoadFailed The file or path specified is not valid

5.2.2.2 TT_Update()

The TT_Update() function processes all outstanding camera data, triangulates, solves rigid bodies,
and streams tracking data. This function should be called often, perhaps in the main loop of the
software using the Tracking Tools API. Ideally this would be called periodically every 1ms to
10ms. If the rate at which TT_Update() is called drops below 50ms there is danger of losing
tracking data. It returns information about whether or not it succeeded.

NPRESULT TT_Update()

Parameters
none• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

12/33



InvalidLicense A valid Rigid Body license was not found

NoFrameAvailable No tracking data was found

5.2.2.3 TT_UpdateSingleFrame()

The TT_UpdateSingleFrame() function processes a single frame of outstanding camera data,
triangulates, solves rigid bodies, and streams tracking data. This function should be called often,
perhaps in the main loop of the software using the Tracking Tools API. Ideally this would be
called periodically more often than every 10ms to ensure no loss of tracking data. It returns
information about whether or not it succeeded.

NPRESULT TT_UpdateSingleFrame()

Parameters
none• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

InvalidLicense A valid Rigid Body license was not found

NoFrameAvailable No tracking data was found

5.2.2.4 TT_LoadTrackables()

The TT_LoadTrackables() function loads a set of rigid body definitions from a file for tracking. It
returns information about whether or not it succeeded.

NPRESULT TT_LoadTrackables(const char *filename)

Parameters
filename
[in] the path to the location of the rigid body definition file

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

Failed The trackables failed to load

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

13/33



5.2.2.5 TT_AddTrackables()

The TT_AddTrackables() function loads a set of rigid body definitions from a file for tracking,
however it does not clear the existing list of Trackables beforehand like TT_LoadTrackables()
does. It returns information about whether or not it succeeded.

NPRESULT TT_AddTrackables (const char *filename)

Parameters
filename
[in] the path to the location of the rigid body definition file

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

Failed The trackables failed to load

5.2.2.6 TT_CreateTrackable()

The TT_CreateTrackable() function creates a trackable based on the marker count and marker list
provided. The MarkerList is expected to contain a list of marker coordinates in the order:
x1,y1,z1,x2,y2,z2,etc...xN,yN,zN. It returns information about whether or not it succeeded.

NPRESULT TT_CreateTrackable(const char* Name, int ID, int MarkerCount, float
*MarkerList)

Parameters
Name
[in] the Name for the newly created trackable

• 

ID
[in] the ID for the newly created trackable

• 

MarkerCount
[in] the number of markers used to create the trackable, this should match the number
provided in MarkerList

• 

MarkerList
[in] a pointer to an array of floats of marker coordinates for creating the trackable in the
order: x1,y1,z1,x2,y2,z2,etc...xN,yN,zN

• 

Parameters

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

14/33



Value Meaning

NPRESULT_SUCCESS Method succeeded

Failed Creation of the trackable failed

5.2.2.7 TT_RemoveTrackable()

The TT_RemoveTrackable() function removes an individual rigid body from the list of tracked
rigid bodies. It returns information about whether or not it succeeded.

NPRESULT TT_RemoveTrackable(int Index)

Parameters
index
[in] the index number of the desired rigid body. the index is zero based

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

Failed The trackable failed to delete

5.2.2.8 TT_LoadProject()

The TT_LoadProject() function loads a Tracking Tools project.
NPRESULT TT_LoadTrackables(const char *filename)

Parameters
filename
[in] the path to the location of the rigid body definition file

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

Failed The trackables failed to load

5.2.2.9 TT_SaveProject()

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

15/33



The TT_SaveProject() function saves a Tracking Tools project.
NPRESULT TT_SaveTrackables(const char *filename)

Parameters
filename
[in] the path to the location of the rigid body definition file

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

Failed The trackables failed to load

5.2.3 Tracking Tools Streaming

5.2.3.1 TT_StreamTrackd()

The TT_StreamTrackd() function starts and stops streaming tracking data over the Trackd
interface. It returns information about whether or not it succeeded.

NPRESULT TT_StreamTrackd(bool enabled)

Parameters
enabled
[in] starts and stops the streaming, true starts and false stops

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

5.2.3.2 TT_StreamVRPN()

The TT_StreamVRPN() function starts and stops streaming tracking data over the VRPN
interface. It returns information about whether or not it succeeded.

NPRESULT TT_StreamVRPN(bool enabled, int port)

Parameters
enabled
[in] starts and stops the streaming, true starts and false stops

• 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

16/33



port
[in] selects the network port to broadcast over

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

5.2.3.3 TT_StreamNP()

The TT_StreamNP() function starts and stops streaming tracking data over the NaturalPoint
NATNET streaming interface. It returns information about whether or not it succeeded.

NPRESULT TT_StreamNP(bool enabled)

Parameters
enabled
[in] starts and stops the streaming, true starts and false stops

• 

Parameters
Value Meaning

NPRESULT_SUCCESS Method succeeded

5.2.4 Frame

5.2.4.1 TT_FrameMarkerCount()

The TT_FrameMarkerCount() function returns the number of 3D point cloud markers found in the
current frame.

int TT_FrameMarkerCount()

Parameters
(returns)
[out] the number of 3D point cloud markers found in the current frame

• 

5.2.4.2 TT_FrameMarkerX()

The TT_FrameMarkerX() function returns the X axis position in meters of the selected 3D point

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

17/33



cloud marker.

float TT_FrameMarkerX(int index)

Parameters
(returns)
[out] the X position in meters of the selected 3D point cloud marker

• 

index
[in] the index number of the desired marker. the index is zero based

• 

Parameters
Value Meaning

0 No frame data was found

5.2.4.3 TT_FrameMarkerY()

The TT_FrameMarkerY() function returns the Y axis position in meters of the selected 3D point
cloud marker.

float TT_FrameMarkerY(int index)

Parameters
(returns)
[out] the Y position in meters of the selected 3D point cloud marker

• 

index
[in] returns the index number of the desired marker. the index is zero based

• 

Parameters
Value Meaning

0 No frame data was found

5.2.4.4 TT_FrameMarkerZ()

The TT_FrameMarkerZ() function returns the Z axis position in meters of the selected 3D point
cloud marker.

float TT_FrameMarkerZ(int index)

Parameters

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

18/33



(returns)
[out] the Z position in meters of the selected 3D point cloud marker

• 

index
[in] returns the index number of the desired marker. the index is zero based

• 

Parameters
Value Meaning

0 No frame data was found

5.2.5 Rigid Body Control

5.2.5.1 TT_IsTrackableTracked()

The TT_IsTrackableTracked() function returns information about whether the selected rigid body
is found in the current frame.

bool TT_IsTrackableTracked(int index)

Parameters
(returns)
[out] true if the selected rigid body is found in the current frame

• 

index
[in] the index number of the desired rigid body. the index is zero based

• 

5.2.5.2 TT_TrackableLocation()

The TT_TrackableLocation() function returns the position and orientation of the selected rigid
body. TT_IsTrackableTracked() should be checked first to determine whether the rigid body was
tracked in the current frame, otherwise the data may be stale.

void TT_TrackableLocation(int RigidIndex,
          float *x, float *y, float *z,
          float *qx, float *qy, float *qz, float *qw,
          float *yaw, float *pitch, float *roll)

Parameters
RigidIndex
[in] the index number of the desired rigid body. the index is zero based

• 

x
[out] receives the X axis position in meters of the selected rigid body

• 

y
[out] receives the Y axis position in meters of the selected rigid body

• 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

19/33



z
[out] receives the Z axis position in meters of the selected rigid body

• 

qx
[out] receives the quaternion x value of the selected rigid body

• 

qy
[out] receives the quaternion y value of the selected rigid body

• 

qz
[out] receives the quaternion z value of the selected rigid body

• 

qw
[out] receives the quaternion w value of the selected rigid body

• 

heading
[out] receives the yaw orientation value in degrees of the selected rigid body

• 

attitude
[out] receives the pitch orientation value in degrees of the selected rigid body

• 

bank
[out] receives the roll orientation value in degrees of the selected rigid body

• 

5.2.5.3 TT_ClearTrackableList()

The TT_ClearTrackableList() function removes all of the currently loaded rigid body definitions.

void TT_ClearTrackableList()

Parameters
none• 

5.2.5.4 TT_GetTrackableCount()

The TT_GetTrackableCount() function returns the number of currently loaded rigid body
definitions.

int TT_GetTrackableCount()

Parameters
(returns)
[out] the number of currently loaded rigid body definitions.

• 

5.2.5.4 TT_GetTrackableID()

The TT_GetTrackableID() function returns the ID for the selected rigid body.

int TT_GetTrackableID(int index)

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

20/33



Parameters
(returns)
[out] the ID of the selected rigid body

• 

index
[in] the index of the desired rigid body. the index is zero based

• 

5.2.5.5 TT_SetTrackableID()

The TT_SetTrackableID() function changes the ID for the selected rigid body.

void TT_SetTrackableID(int index, int ID)

Parameters
index
[in] the index of the desired rigid body. the index is zero based

• 

ID
[in] the new ID value for the selected rigid body

• 

5.2.5.6 TT_GetTrackableName()

The TT_GetTrackableName() function returns the ID for the selected rigid body.

const char* TT_GetTrackableName(int index)

Parameters
(returns)
[out] the name of the selected rigid body

• 

index
[in] the index of the desired rigid body. the index is zero based

• 

5.2.5.7 TT_SetTrackableEnabled()

The TT_SetTrackableEnabled() function controls whether the selected rigid body is enabled for
tracking.

void TT_SetTrackableEnabled(int index, bool enabled)

Parameters
index
[in] the index of the desired rigid body. the index is zero based

• 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

21/33



enabled
[in] a value of true enables the rigid body, a value of false disables it

• 

5.2.5.8 TT_TrackableEnabled()

The TT_TrackableEnabled() function returns information about whether the selected rigid body is
enabled for tracking.

bool TT_TrackableEnabled(int index)

Parameters
(returns)
[out] a value of true means the rigid body is enabled, a value of false means it is disabled

• 

index
[in] the index of the desired rigid body. the index is zero based

• 

5.2.5.9 TT_TrackableMarkerCount()

The TT_TrackableMarkerCount() function returns the number of markers used in the selected
rigid body definition.

int TT_TrackableMarkerCount(int index)

Parameters
(returns)
[out] the number of markers used in the selected rigid body

• 

index
[in] the index of the desired rigid body. the index is zero based

• 

5.2.5.10 TT_TrackableMarker()

The TT_TrackableMarker() function returns the position of the selected marker in the selected
rigid body definition. Marker positions are in meters and relative to the pivot point or center of
mass of the rigid body.

void TT_TrackableMarker(int RigidIndex, int MarkerIndex, float *x, float *y, float *z)

Parameters
RigidIndex
[in] the index of the desired rigid body. the index is zero based

• 

MarkerIndex
[in] the index of the desired marker. the index is zero based

• 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

22/33



x
[out] the X axis position of the marker in meters

• 

y
[out] the Y axis position of the marker in meters

• 

z
[out] the Z axis position of the marker in meters

• 

5.2.5.11 TT_TrackableTranslatePivot()

The TT_TrackableTranslatePivot() function translates the pivot point for the selected rigid body.
The translation amounts are in meters and specify the amount to translate relative to the current
pivot point or center of mass of the rigid body.

NPRESULT TT_TrackableTranslatePivot(int index, float x, float y, float z)

Parameters
int
[in] the index of the desired rigid body. the index is zero based

• 

x
[out] the amount to translate the pivot point on the X axis in meters

• 

y
[out] the amount to translate the pivot point on the Y axis in meters

• 

z
[out] the amount to translate the pivot point on the Z axis in meters

• 

5.2.6 Point Cloud Interface

5.2.6.1 TT_CameraCount()

The TT_CameraCount() function returns the number of connected cameras.

int TT_CameraCount()

Parameters
(returns)
[out] the number of connected cameras

• 

5.2.6.2 TT_CameraXLocation()

The TT_CameraXLocation() function returns the X position of the selected camera in relation to
the coordinate system origin.

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

23/33



float TT_CameraXLocation(int index)

Parameters
(returns)
[out] the X position of the selected camera in meters

• 

index
[in] the index of the desired camera. the index is zero based

• 

5.2.6.3 TT_CameraYLocation()

The TT_CameraYLocation() function returns the Y position of the selected camera in relation to
the coordinate system origin.

float TT_CameraYLocation(int index)

Parameters
(returns)
[out] the Y position of the selected camera in meters

• 

index
[in] the index of the desired camera. the index is zero based

• 

5.2.6.4 TT_CameraZLocation()

The TT_CameraZLocation() function returns the Z position of the selected camera in relation to
the coordinate system origin.

float TT_CameraZLocation(int index)

Parameters
(returns)
[out] the Z position of the selected camera in meters

• 

index
[in] the index of the desired camera. the index is zero based

• 

5.2.6.5 TT_CameraOrientationMatrix()

The TT_CameraOrientationMatrix() function returns the selected element of the orientation
matrix of the selected camera.

float TT_CameraOrientationMatrix(int camera, int index)

Parameters

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

24/33



(returns)
[out] the selected element of the orientation matrix

• 

camera
[in] the index of the desired camera. the index is zero based

• 

index
[in] index of the item in the array to retrieve. there are 9 elements in the array, valid inputs
range from 0 to 8.

• 

5.2.6.6 TT_CameraName()

The TT_CameraName() function returns the selected element of the orientation matrix of the
selected camera.

float TT_CameraName(int index)

Parameters
(returns)
[out] the camera name

• 

index
[in] the index of the desired camera. the index is zero based

• 

5.2.6.7 TT_CameraMarkerCount()

The TT_CameraMarkerCount() function returns the number of 2D markers seen by the camera for
the current frame.

int TT_CameraMarkerCount(int CameraIndex)

Parameters
(returns)
[out] the number of 2D markers

• 

result
[in] the index of the desired camera. the index is zero based

• 

5.2.6.8 TT_CameraMarker()

The TT_CameraMarker() function returns coordinates of a 2D marker for the current frame.

bool TT_CameraMarker(int CameraIndex, int MarkerIndex, float &x, float &y)

Parameters

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

25/33



(returns)
[out] boolean true indicates successful population of x and y input parameters

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

MarkerIndex
[in] the index of the desired marker. the index is zero based

⋅ 

x
[in] a float passed by reference to be populated with the x coordinate of the marker

⋅ 

y
[in] a float passed by reference to be populated with the x coordinate of the marker

⋅ 

5.2.6.9 TT_CameraMarkerPredistorted()

The TT_CameraMarkerPredistorted() function returns coordinates of a 2D marker for the current
frame. The location is predistorted by the intrinsic lens parameters of the camera to return the
coordinates as if there was no lens distortion.

bool TT_CameraMarkerPredistorted(int CameraIndex, int MarkerIndex, float &x, float
&y)

Parameters
(returns)
[out] boolean true indicates successful population of x and y input parameters

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

MarkerIndex
[in] the index of the desired marker. the index is zero based

⋅ 

x
[in] a float passed by reference to be populated with the x coordinate of the marker

⋅ 

y
[in] a float passed by reference to be populated with the x coordinate of the marker

⋅ 

5.2.6.10 TT_SetCameraSettings()

The TT_SetCameraSettings() function allows you to set some of the camera settings, such as
video mode, exposure, threshold, and illumination.

bool TT_SetCameraSettings(int CameraIndex, int VideoType, int Exposure, int Threshold,
int Intensity)

Parameters
(returns)
[out] boolean true indicates successful update of the camera settings

⋅ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

26/33



CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

VideoType
[in] the desired in-camera video processing mode.
Valid values are:
0 = Segment Mode
1 = Grayscale Mode
2 = Object Mode
4 = Precision Mode
6 = MJPEG Mode (V100R2 only)

⋅ 

Exposure
[in] the desired exposure setting for the camera.
Valid values are: 1-480

⋅ 

Threshold
[in] the desired video threshold level for the camera. Pixels with intensities darker than
this value will be filtered out when using processed video modes.
Valid values are: 0-255

⋅ 

Intensity
[in] the desired IR LED setting for the camera. This should be set to 15 for almost all
situations. The recommended method for reducing IR LED brightness is to lower the
camera exposure setting, this has the effect of shortening the IR strobe duration.
Valid values are: 0-15

⋅ 

5.2.6.11 TT_SetCameraAEC()

The TT_SetCameraAEC() function allows automatic exposure control (AEC) in the camera to be
enabled or disabled. When automatic exposure control is enabled the camera will attempt to
optimize the exposure value to produce an image suitable for operator viewing (instead of marker
tracking).

AEC should not be turned on when a camera is being used for marker tracking.

bool TT_SetCameraAEC(int CameraIndex, bool EnableAutomaticExposureControl)

Parameters
(returns)
[out] boolean true indicates successful update of the camera AEC setting

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

27/33



EnableAutomaticExposureControl
[in] a value of true enables AEC, a value of false disables it. Default is disabled.

⋅ 

5.2.6.12 TT_SetCameraAGC()

The TT_SetCameraAGC() function allows automatic gain control (AGC) in the camera to be
enabled or disabled. When automatic gain control is enabled the camera will attempt to optimize
the gain value to produce an image suitable for operator viewing (instead of marker tracking).
AGC should not be turned on when a camera is being used for marker tracking.

bool TT_SetCameraAGC(int CameraIndex, bool EnableAutomaticGainControl)

Parameters
(returns)
[out] boolean true indicates successful update of the camera AGC setting

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

EnableAutomaticGainControl
[in] a value of true enables AGC, a value of false disables it. Default is disabled.

⋅ 

5.2.6.13 TT_SetCameraFilterSwitch()

The TT_SetCameraFilterSwitch() function toggles the camera between capturing infrared or
visible light. Operating the camera in visible light mode is useful for operator viewing or scene
reference video recording. The camera should not be in visible light mode when used for marker
tracking.
Only cameras with the Filter Switcher feature are supported by this function.

bool TT_SetCameraFilterSwitch(int CameraIndex, bool EnableIRFilter)

Parameters
(returns)
[out] boolean true indicates successful update of the camera FilterSwitch setting

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

EnableIRFilter
[in] a value of true selects infrared light mode, a value of false selects visible light mode.
Default is infrared light mode.

⋅ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

28/33



5.2.6.14 TT_SetCameraHighPower()

The TT_SetCameraHighPower() function toggles the camera between Normal and High power IR
LED mode. High power mode provides additional power to the built-in IR LEDs which increases
the maximum tracking range or allows faster shutter speeds to be used at the same distance as
Normal power mode.

V100R2 cameras must be directly connected to OptiHubs in order to use High power mode.

bool TT_SetCameraHighPower(int CameraIndex, bool EnableHighPowerMode)

Parameters
(returns)
[out] boolean true indicates successful update of the camera High power setting

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

EnableHighPowerMode
[in] a value of true selects High power mode, a value of false selects Normal power mode.
Default is Normal power mode.

⋅ 

5.2.6.15 TT_SetCameraMJPEGHighQuality()

The TT_SetCameraMJPEGHighQuality() function toggles the camera between Normal and High
quality MJPEG video mode. When MJPEG High quality mode is enabled the camera uses less
compression for the MJPEG video images. Less compression results in fewer visual artifacts,
however it also consumes more USB bandwidth.

Only cameras with MJPEG video mode are supported by this function.

bool TT_SetCameraMJPEGHighQuality(int CameraIndex, int MJPEGQuality)

Parameters
(returns)
[out] boolean true indicates successful update of the camera MJPEG High quality setting

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

29/33



MJPEGQuality
[in] the desired MJPEG quality mode Valid values are
50 = Normal quality MJPEG mode (default)
100 = High quality MJPEG mode

⋅ 

5.2.6.16 TT_SetCameraGrayscaleDecimation()

The TT_SetCameraGrayscaleDecimation() function specifies which spatial decimation setting
(resolution down-sampling) for the camera to use when operating in raw grayscale video mode.
Smaller down-sampled resolutions consume less USB bandwidth and may allow successful
transmission of raw grayscale video frames in scenarios where full-frame grayscale is not
possible.

bool TT_SetCameraGrayscaleDecimation(int CameraIndex, int Decimation)

Parameters
(returns)
[out] boolean true indicates a successful update of the camera Grayscale Decimation
setting

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

Decimation
[in] the desired Grayscale Spatial Decimation setting Valid values are
0 = Native resolution, no down sampling (default)
2 = 1/2 scale resolution (example: 640x480 downsampled to 320x240)
4 = 1/4 scale resolution (example: 640x480 downsampled to 160x120)

⋅ 

5.2.6.17 TT_CameraGrayscaleDecimation()

The TT_CameraGrayscaleDecimation() function returns the current spatial decimation setting
(resolution down-sampling) used when the camera is operating in raw grayscale video mode.

TTAPI int TT_CameraGrayscaleDecimation(int CameraIndex)

Parameters
(returns)
[out] current grayscale spatial decimation setting for the camera

Return values :
0 = Native resolution, no down sampling (default)

⋅ 

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

30/33



2 = 1/2 scale resolution (example: 640x480 downsampled to 320x240)
4 = 1/4 scale resolution (example: 640x480 downsampled to 160x120)

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

5.2.6.18 TT_CameraFrameBuffer()

The TT_CameraFrameBuffer() function returns a rasterized image of the camera's view for the
current frame. This function fills the provided buffer with an image of what is in the camera view.
The resulting Image depends on what video mode the camera is in. If the camera is in grayscale
mode, for example, a grayscale image is returned from this call.

bool TT_CameraFrameBuffer(int CameraIndex, int BufferPixelWidth, int
BufferPixelHeight,
int BufferByteSpan, int BufferPixelBitDepth, unsigned char *Buffer)

Parameters
(returns)
[out] boolean true indicates successful rasterization

⋅ 

CameraIndex
[in] the index of the desired camera. the index is zero based

⋅ 

BufferPixelWidth
[in] the width in pixels of the buffer being passed for rasterization

⋅ 

BufferPixelHeight
[in] the height in pixels of the buffer being passed for rasterization

⋅ 

BufferByteSpan
[in] the span of a single raster row in bytes of the buffer being passed. A value of zero is
automatically populated with BufferPixelWidth*BufferPixelDepth

⋅ 

BufferPixelBitDepth
[in] the pixel bit depth of the buffer being passed. Valid bit depths are 8, 16, 24, 32

⋅ 

Buffer
[in] the pointer to the buffer to receive the rasterized camera imager

⋅ 

5.2.7 Return Code Processing

5.2.7.1 TT_GetResultString()

The TT_GetResultString() function returns a plain text message for status codes returned from
other functions in the Rigid Body API.

const char *TT_GetResultString(NPRESULT result)

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

31/33



Parameters
(returns)
[out] the plain text message associated with the selected return code

⋅ 

result
[in] the status code returned from another function in the Tracking Tools API

⋅ 

6. Tips and Tricks

6.1 Tracking Environment

The Tracking Tools application is designed to work in a wide variety of conditions, and the current
generation of OptiTrack cameras are more robust and reliable than ever before. There are, however, a
number of things that you can do to optimize their performance :

Distance between the cameras and the user :
The optimum range for tracking markers with OptiTrack cameras is between 0.5 to 6 meters.

Lighting :
We recommend turning off or dimming lights in the room and removing any highly reflective materials
that are directly in the view of the OptiTrack cameras.

6.2 Tracking Markers

To achieve the best 3D tracking performance NaturalPoint recommends the use of spherical reflective 3D
markers which are available from our online store. The markers will be detected most easily when they are
clean and there has not been any abrasion to the surface of the marker. If the reflective surface of the
markers will come into frequent contact with skin or other surfaces then it is recommended to replace the
markers on a regular basis.

7. Cameras and Accessories

NaturalPoint offers a complete line of high quality cameras and accessories to complement your Tracking Tools
software. Please visit our online store to find out more at : OptiTrack online store catalogue

8 Software Updates

In order to better serve your needs we continually update the Tracking Toolkits software, you may

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

32/33

http://www.naturalpoint.com/optitrack/store/catalog.html


download these updates free of charge from www.naturalpoint.com/optitrack.

To download and install new software, please follow these steps

Go to www.naturalpoint.com/optitrack and click on the Support link at the top of the page, then
go down to the download section.

1. 

If the version of software listed for your product is more recent than the version of the software
installed on your computer, then download and save the updated installer file to your desktop or
temp folder. If a newer version is not available, then there is no need to update your software.

2. 

Disconnect any OptiTrack cameras from your computer and ensure that no Tracking Toolkits
software is running.

3. 

Use the "Add and Remove Programs" feature of the Windows Control Panel to un-install your
existing Tracking Toolkits software.

4. 

Double click on the downloaded installer .exe file to install the new software. After the program
icon reappears on your desktop, you may reconnect OptiTrack cameras to your computer and run
the updated software.

5. 

9 Troubleshooting

If you are experiencing difficulty using this product, please call 1-541-753-6645 or visit the NaturalPoint
website at www.naturalpoint.com, or our online forums at forum.naturalpoint.com for advanced customer
support.

NaturalPoint Tracking Tools Users Manual : Getting Started 04/19/10 18:47:59

33/33

http://www.naturalpoint.com/optitrack
http://www.naturalpoint.com
http://forum.naturalpoint.com

	NaturalPoint Tracking Tools Users Manual : Getting Started

